Fitness-valley crossing with generalized parent-offspring transmission.
نویسندگان
چکیده
Simple and ubiquitous gene interactions create rugged fitness landscapes composed of coadapted gene complexes separated by "valleys" of low fitness. Crossing such fitness valleys allows a population to escape suboptimal local fitness peaks to become better adapted. This is the premise of Sewall Wright's shifting balance process. Here we generalize the theory of fitness-valley crossing in the two-locus, bi-allelic case by allowing bias in parent-offspring transmission. This generalization extends the existing mathematical framework to genetic systems with segregation distortion and uniparental inheritance. Our results are also flexible enough to provide insight into shifts between alternate stable states in cultural systems with "transmission valleys". Using a semi-deterministic analysis and a stochastic diffusion approximation, we focus on the limiting step in valley crossing: the first appearance of the genotype on the new fitness peak whose lineage will eventually fix. We then apply our results to specific cases of segregation distortion, uniparental inheritance, and cultural transmission. Segregation distortion favouring mutant alleles facilitates crossing most when recombination and mutation are rare, i.e., scenarios where crossing is otherwise unlikely. Interactions with more mutable genes (e.g., uniparental inherited cytoplasmic elements) substantially reduce crossing times. Despite component traits being passed on poorly in the previous cultural background, small advantages in the transmission of a new combination of cultural traits can greatly facilitate a cultural transition. While peak shifts are unlikely under many of the common assumptions of population genetic theory, relaxing some of these assumptions can promote fitness-valley crossing.
منابع مشابه
The rate of fitness-valley crossing in sexual populations.
Biological traits result in part from interactions between different genetic loci. This can lead to sign epistasis, in which a beneficial adaptation involves a combination of individually deleterious or neutral mutations; in this case, a population must cross a "fitness valley" to adapt. Recombination can assist this process by combining mutations from different individuals or retard it by brea...
متن کاملThe rate at which asexual populations cross fitness valleys.
Complex traits often involve interactions between different genetic loci. This can lead to sign epistasis, whereby mutations that are individually deleterious or neutral combine to confer a fitness benefit. In order to acquire the beneficial genotype, an asexual population must cross a fitness valley or plateau by first acquiring the deleterious or neutral intermediates. Here, we present a comp...
متن کاملFundamental Properties of the Evolution of Mutational Robustness
Evolution on neutral networks of genotypes has been found in models to concentrate on genotypes with high mutational robustness, to a degree determined by the topology of the network. Here analysis is generalized beyond neutral networks to arbitrary selection and parent-offspring transmission. In this larger realm, geometric features determine mutational robustness: the alignment of fitness wit...
متن کاملQuantifying the Role of Population Subdivision in Evolution on Rugged Fitness Landscapes
Natural selection drives populations towards higher fitness, but crossing fitness valleys or plateaus may facilitate progress up a rugged fitness landscape involving epistasis. We investigate quantitatively the effect of subdividing an asexual population on the time it takes to cross a fitness valley or plateau. We focus on a generic and minimal model that includes only population subdivision i...
متن کاملPlant and Animal Reproductive Strategies: Lessons from Offspring Size and Number Tradeoffs
The tradeoff between offspring size and number is ubiquitous and manifestly similar in plants and animals despite fundamental differences between the evolutionary histories of these two major life forms. Fecundity (offspring number) primarily affects parental fitness, while offspring size underpins the fitness of parents and offspring. We provide an overview of theoretical models dealing with o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theoretical population biology
دوره 105 شماره
صفحات -
تاریخ انتشار 2015